
Natural and Clamped Cubic Spline

Interpolation

Copyright 2000 Jennifer Voitle

CubicSpline.nb 1

Purpose

Cubic splines are used for function interpolation and approximation.

For a function f(x) defined on the interval [a,b], either in functional or tabular form, cubic spline interpolation is the process

of constructing (generally different) piecewise continuous cubic polynomials on subintervals [ti,ti+1] of the function domain

[a,b]. Cubic splines are preferred to polynomial interpolants because cubic splines are locally only cubics, and are hence

simple to evaluate. They exhibit less severe oscillatory behavior than interpolating polynomials. In fact, the natural cubic

spline is the smoothest possible function of all square integrable functions. Also, interpolating polynomials, since they are

defined globally rather than locally as are splines, are adversely affected by bad data: error in one data point will affect the

entire interpolating polynomial. Conversely, with a spline it is possible to confine the ill-effects of an erroneous data point.

Cubic splines have the following properties: (i) they interpolate the given data;

(ii) they have continuity of the zeroth, first and second derivatives at interior

points; (iii) they satisfy certain boundary conditions. The natural or free boundary

condition is the most common. Alternatively one may use the clamped or fixed

boundary condition.

The natural cubic spline is constructed by imposing the following conditions:

(a) If f(x) is given in functional form, the given domain [a,b] is subdivided into subintervals [ti,ti+1] , i = 0, ... , n. and the

function evaluated at each ti.

The subintervals need not be of equal size, but must be ordered such that

ti < ti+1. For f(x) is given in tabular form the subintervals are defined by the given data.

(b) A cubic is set up over each subinterval and defined by the relation

S[i,x] = ai + bi (x-t[i]) + ci (x-t[i])^2 + di (x-t[i])^3, xÎ [ti,ti+1] , i = 0, ... , n-1

(c) The requirement of interpolation of the given data imposes the condition that

S[i,x] = f[t[i]] = ai for each point i = 0, ... , n.

(d) The requirement of continuity of the spline imposes the condition that

S[i,t[i]] = S[i,t[i+1]] for each interior point i = 1, ... , n-1.

(e) The requirement of continuity of the first derivative of the spline imposes the condition that S'[i,t[i]] = S'[i,t[i+1]] for

each interior point i = 1, ... , n-1.

(f) The requirement of continuity of the second derivative of the spline imposes the condition that S''[i,t[i]] = S''[i,t[i+1]]

for each interior point i = 1, ... , n-1.

(g) For the natural cubic spline, boundary conditions are S''[0,t[0]] = S''[n-1,t[n]] = 0.

For the clamped cubic spline, the boundary conditions are S'[0,t[0]] = f'[t[0]];

S'[n-1,t[n]] = f'[n].

Since the ai's are known automatically by condition (a), there will result a linear

system of 3n equations for the 3n unknowns bi, ci and di, i = 0, ... , n-1.

These equations are usually solved by matrix methods such as inversion or

LU-Factorization. However, they are handled very conveniently by Mathematica's built-in Solve function.

CubicSpline.nb 2

Usage

This program requires input of n+1 data points {t[i],f[t[i]]}, i = 0, ... , n.
Both natural and clamped boundary cubic splines will be constructed and
plotted against the given data for comparative purposes.
The integral of the spline is also computed and printed.
Your data need not be evenly spaced, but must be ordered
(a = t[0] < t[1] < ... < t[n] = b)
Note that n will be one less than the actual number of data points.

Execution Time on the Macintosh II

The Solve function took approximately 68 seconds to solve a 9 x 9 system of equations (ten input data points) on a

Macintosh II.

If a larger system is involved, matrix inversion should be used.

The steps involved are similar to those carried out by the Solve method. In the matrix inversion method, the system

[LHS]{SplineCoefficients} = {RHS} must be solved for the unknown spline coefficients b[i], c[i] and d[i]. Generation of

the

array elements of both [LHS] and {RHS} is facilitated via the Coefficient

function of Mathematica.

CubicSpline.nb 3

 Spline Procedures

Clear@a, b, c, d, f, t, S, x, CubicSpline, plotD
S@i_Integer, x_D := a@iD + b@iD Hx − t@iDL + c@iD Hx − t@iDL2 + d@iD Hx − t@iDL3
ConstructCubicSpline :=

Block@8i<, EquationList = 8<; EquationList = Append@EquationList, S@n − 1, t@nDD == a@nDD;
Do@EquationList = Append@EquationList, S@i, t@i + 1DD == S@i + 1, t@i + 1DDD, 8i, 0, n − 2<D;
Do@EquationList = Append@EquationList,

Expand@∂xS@i, xD ê. x → t@i + 1DD == Expand@∂xS@i + 1, xD ê. x → t@i + 1DDD, 8i, 0, n − 2<D;
Do@EquationList = Append@EquationList, Expand@∂8x,2<S@i, xD ê. x → t@i + 1DD ==

Expand@∂8x,2<S@i + 1, xD ê. x → t@i + 1DDD, 8i, 0, n − 2<DD
ShowUnknowns := Block@8i<, Unknowns = 8<; Do@Unknowns = Append@Unknowns, b@iDD,

8i, 0, n − 1<D; Do@Unknowns = Append@Unknowns, c@iDD, 8i, 0, n − 1<D;
Do@Unknowns = Append@Unknowns, d@iDD, 8i, 0, n − 1<D; UnknownsD

SolveandPrintSpline := BlockA8i<,
Print@"\nThe solution of the system of spline equations "D;
Print@EquationListD; Print@"\nwith unknowns "D; Print@ShowUnknownsD;
Result = N@Solve@EquationList, UnknownsDD; DoAb@i − 1D = ResultP1, i, 2T;

c@i − 1D = ResultP1, i + n, 2T; d@i − 1D = ResultP1, i + 2 n, 2T, 9i, 1,
3 n
���������
3

=E;

Print@"\nThe cubic spline is given as:"D; Do@Print@"\nS@", i, ",xD = ",

S@i, xD, " for ", t@iD, " < x < ", t@i + 1DD, 8i, 0, n − 1<DE
NaturalCubicSpline := Block@8i<, ConstructCubicSpline;

EquationList = Append@EquationList, Expand@∂8x,2<S@0, xD ê. x → t@0DD == 0D;
EquationList = Append@EquationList, Expand@∂8x,2<S@n − 1, xD ê. x → t@nDD == 0D;
title = "FreeCubicSpline"; SolveandPrintSpline; PiecewiseCubicPlotD

ClampedCubicSpline := Block@8i<, ConstructCubicSpline;

EquationList = Append@EquationList, Expand@∂xS@0, xD ê. x → t@0DD == f′@t@0DDD;
EquationList = Append@EquationList, Expand@∂xS@n − 1, xD ê. x → t@nDD == f′@t@nDDD;
title = "FixedCubicSpline"; SolveandPrintSpline; PiecewiseCubicPlotD

PiecewiseCubicPlot := BlockA8i<,
Print@"The cubic spline approximation of the function is plotted below."D;

DoAplot@iD = TableAN@8x, S@i, xD<D, 9x, t@iD, t@i + 1D,
1
�������
10

Ht@i + 1D − t@iDL=E,

8i, 0, n − 1<E; SplinePlot = ListPlot@Flatten@Table@plot@iD, 8i, 0, n − 1<D, 1D,
PlotJoined → True, PlotLabel → titleD;

TrueDataPlot = ListPlot@InputData, PlotJoined → True, PlotLabel → "Actual Data"D;
Show@SplinePlot, TrueDataPlotD;E

CubicSpline.nb 4

Construction of Natural Cubic Spline by
the Solve Function

ü Data Input

NumberofPoints = 7

n = NumberofPoints− 1

Do@t@iD = 0.5 i, 8i, 0, 6<D
f@t@0DD = 70; f@t@1DD = 70; f@t@2DD = 66

f@t@3DD = 52; f@t@4DD = 18; f@t@5DD = 11

f@t@6DD = 10

InputData = Table@8t@iD, f@t@iDD<, 8i, 0, n<D
LeftLimit = t@0D; RightLimit = t@nD

spacing =
RightLimit − LeftLimit
���

n

Print@"The input data are: "D
Do@a@iD = f@t@iDD; Print@"x@", i, "D = ", N@t@iDD, "\ty@", i, "D = ", N@a@iDDD, 8i, 0, n<D

7

6

66

11

10

880, 70<, 80.5, 70<, 81., 66<, 81.5, 52<, 82., 18<, 82.5, 11<, 83., 10<<

3.

0.5

The input data are:

x@0D = 0. y@0D = 70.

x@1D = 0.5 y@1D = 70.

x@2D = 1. y@2D = 66.

x@3D = 1.5 y@3D = 52.

x@4D = 2. y@4D = 18.

x@5D = 2.5 y@5D = 11.

x@6D = 3. y@6D = 10.

NaturalCubicSpline

CubicSpline.nb 5

The solution of the system of spline equations

811 + 0.5 b@5D + 0.25 c@5D + 0.125 d@5D == 10,

70 + 0.5 b@0D + 0.25 c@0D + 0.125 d@0D == 70 + 0. b@1D + 0. c@1D + 0. d@1D,
70 + 0.5 b@1D + 0.25 c@1D + 0.125 d@1D == 66 + 0. b@2D + 0. c@2D + 0. d@2D,
66 + 0.5 b@2D + 0.25 c@2D + 0.125 d@2D == 52 + 0. b@3D + 0. c@3D + 0. d@3D,
52 + 0.5 b@3D + 0.25 c@3D + 0.125 d@3D == 18 + 0. b@4D + 0. c@4D + 0. d@4D,
18 + 0.5 b@4D + 0.25 c@4D + 0.125 d@4D == 11 + 0. b@5D + 0. c@5D + 0. d@5D,
b@0D + 1. c@0D + 0.75 d@0D == b@1D + 0. c@1D + 0. d@1D, b@1D + 1. c@1D + 0.75 d@1D == b@2D + 0. c@2D + 0. d@2D,
b@2D + 1. c@2D + 0.75 d@2D == b@3D + 0. c@3D + 0. d@3D, b@3D + 1. c@3D + 0.75 d@3D == b@4D + 0. c@4D + 0. d@4D,
b@4D + 1. c@4D + 0.75 d@4D == b@5D + 0. c@5D + 0. d@5D, 2 c@0D + 3. d@0D == 2 c@1D + 0. d@1D,
2 c@1D + 3. d@1D == 2 c@2D + 0. d@2D, 2 c@2D + 3. d@2D == 2 c@3D + 0. d@3D,
2 c@3D + 3. d@3D == 2 c@4D + 0. d@4D, 2 c@4D + 3. d@4D == 2 c@5D + 0. d@5D, 2 c@0D == 0, 2 c@5D + 3. d@5D == 0<

with unknowns

8b@0D, b@1D, b@2D, b@3D, b@4D, b@5D, c@0D, c@1D,
c@2D, c@3D, c@4D, c@5D, d@0D, d@1D, d@2D, d@3D, d@4D, d@5D<

The cubic spline is given as:

S@0,xD = 70 + 1.73846 x + 1.77636×10−14 x2 − 6.95385 x3 for 0 < x < 0.5

S@1,xD = 70 − 3.47692 H−0.5 + xL − 10.4308 H−0.5 + xL2 + 2.76923 H−0.5 + xL3 for 0.5 < x < 1.

S@2,xD = 66 − 11.8308 H−1. + xL − 6.27692 H−1. + xL2 − 52.1231 H−1. + xL3 for 1. < x < 1.5

S@3,xD = 52 − 57.2 H−1.5 + xL − 84.4615 H−1.5 + xL2 + 125.723 H−1.5 + xL3 for 1.5 < x < 2.

S@4,xD = 18 − 47.3692 H−2. + xL + 104.123 H−2. + xL2 − 74.7692 H−2. + xL3 for 2. < x < 2.5

S@5,xD = 11 + 0.676923 H−2.5 + xL − 8.03077 H−2.5 + xL2 + 5.35385 H−2.5 + xL3 for 2.5 < x < 3.

The cubic spline approximation of the function is plotted below.

0.5 1 1.5 2 2.5 3

10

20

30

40

50

60

70

FreeCubicSpline

CubicSpline.nb 6

0.5 1 1.5 2 2.5 3

20

30

40

50

60

70

Actual Data

CubicSpline.nb 7

0.5 1 1.5 2 2.5 3

10

20

30

40

50

60

70

FreeCubicSpline

FreeSplinePlot = SplinePlot;

Examples of Integration and Differentiation

Cubic Spline Integration

SplineIntegral = ‚
i=0

n−1

Integrate@S@i, tD, Release@8t, t@iD, t@i + 1D<DD;

Print@"The integral of the cubic spline is ", SplineIntegral, "."D

The integral of the cubic spline is 128.606.

Differentiation: Location of Inflection Point

Solve@∂8x,2<S@3, xD == 0, xD

88x → 1.72394<<

Construction of Clamped Cubic Spline by
the Solve Function

The clamped, or fixed boundary, cubic spline uses the boundary conditions

S'[0,x[0]] = f'[x[0]]; S'[n-1,x[n]] = f'[x[n]].

The clamped cubic spline should be used whenever these boundary conditions

are known, as it will better represent the data compared to the natural cubic spline.

Construction of the clamped boundary spline is identical to the natural cubic spline

except for the boundary conditions.

CubicSpline.nb 8

ü Data Input

For comparison, let us use the same data as before but estimate f'[x[0]] and f'[x[n]] by

finite difference formulas. We use a three point forward difference approximation

for f'[x[0]] and a three point backward difference approximation for f'[x[n]] = f'[x[6]]

to approximate the derivative boundary conditions.

Clear@a, b, c, d, f, tD
NumberofPoints = 7

n = NumberofPoints− 1

Do@t@iD = 0.5 i, 8i, 0, 6<D
f@t@0DD = 70; f@t@1DD = 70; f@t@2DD = 66

f@t@3DD = 52; f@t@4DD = 18; f@t@5DD = 11

f@t@6DD = 10

h = 0.5;

f′@t@0DD =
−3 f@t@0DD + 4 f@t@1DD − f@t@2DD
���

2 h

f′@t@nDD =
f@t@n − 2DD − 4 f@t@n − 1DD + 3 f@t@nDD
��

2 h

InputData = Table@8t@iD, f@t@iDD<, 8i, 0, n<D
LeftLimit = t@0D; RightLimit = t@nD
Print@"The input data are: "D
Do@a@iD = f@t@iDD;

Print@"x@", i, "D = ", N@t@iDD, "\ty@", i, "D = ", N@a@iDDD, 8i, 0, n<D;
Print@"with boundary conditions f@", t@0D, "D = ",

f′@t@0DD, ", f@", t@nD, "D = ", f′@t@nDDD

7

6

66

11

10

4.

4.

880, 70<, 80.5, 70<, 81., 66<, 81.5, 52<, 82., 18<, 82.5, 11<, 83., 10<<

3.

The input data are:

x@0D = 0. y@0D = 70.

x@1D = 0.5 y@1D = 70.

x@2D = 1. y@2D = 66.

CubicSpline.nb 9

x@3D = 1.5 y@3D = 52.

x@4D = 2. y@4D = 18.

x@5D = 2.5 y@5D = 11.

x@6D = 3. y@6D = 10.

with boundary conditions f@0D = 4., f@3.D = 4.

ClampedCubicSpline

The solution of the system of spline equations

811 + 0.5 b@5D + 0.25 c@5D + 0.125 d@5D == 10,

70 + 0.5 b@0D + 0.25 c@0D + 0.125 d@0D == 70 + 0. b@1D + 0. c@1D + 0. d@1D,
70 + 0.5 b@1D + 0.25 c@1D + 0.125 d@1D == 66 + 0. b@2D + 0. c@2D + 0. d@2D,
66 + 0.5 b@2D + 0.25 c@2D + 0.125 d@2D == 52 + 0. b@3D + 0. c@3D + 0. d@3D,
52 + 0.5 b@3D + 0.25 c@3D + 0.125 d@3D == 18 + 0. b@4D + 0. c@4D + 0. d@4D,
18 + 0.5 b@4D + 0.25 c@4D + 0.125 d@4D == 11 + 0. b@5D + 0. c@5D + 0. d@5D,
b@0D + 1. c@0D + 0.75 d@0D == b@1D + 0. c@1D + 0. d@1D, b@1D + 1. c@1D + 0.75 d@1D == b@2D + 0. c@2D + 0. d@2D,
b@2D + 1. c@2D + 0.75 d@2D == b@3D + 0. c@3D + 0. d@3D, b@3D + 1. c@3D + 0.75 d@3D == b@4D + 0. c@4D + 0. d@4D,
b@4D + 1. c@4D + 0.75 d@4D == b@5D + 0. c@5D + 0. d@5D, 2 c@0D + 3. d@0D == 2 c@1D + 0. d@1D,
2 c@1D + 3. d@1D == 2 c@2D + 0. d@2D, 2 c@2D + 3. d@2D == 2 c@3D + 0. d@3D, 2 c@3D + 3. d@3D == 2 c@4D + 0. d@4D,
2 c@4D + 3. d@4D == 2 c@5D + 0. d@5D, b@0D == 4., b@5D + 1. c@5D + 0.75 d@5D == 4.<

with unknowns

8b@0D, b@1D, b@2D, b@3D, b@4D, b@5D, c@0D, c@1D,
c@2D, c@3D, c@4D, c@5D, d@0D, d@1D, d@2D, d@3D, d@4D, d@5D<

The cubic spline is given as:

S@0,xD = 70 + 4. x − 7.81538 x2 − 0.369231 x3 for 0 < x < 0.5

S@1,xD = 70 − 4.09231 H−0.5 + xL − 8.36923 H−0.5 + xL2 + 1.10769 H−0.5 + xL3 for 0.5 < x < 1.

S@2,xD = 66 − 11.6308 H−1. + xL − 6.70769 H−1. + xL2 − 52.0615 H−1. + xL3 for 1. < x < 1.5

S@3,xD = 52 − 57.3846 H−1.5 + xL − 84.8 H−1.5 + xL2 + 127.138 H−1.5 + xL3 for 1.5 < x < 2.

S@4,xD = 18 − 46.8308 H−2. + xL + 105.908 H−2. + xL2 − 80.4923 H−2. + xL3 for 2. < x < 2.5

S@5,xD = 11 − 1.29231 H−2.5 + xL − 14.8308 H−2.5 + xL2 + 26.8308 H−2.5 + xL3 for 2.5 < x < 3.

The cubic spline approximation of the function is plotted below.

CubicSpline.nb 10

0.5 1 1.5 2 2.5 3

10

20

30

40

50

60

70

FixedCubicSpline

0.5 1 1.5 2 2.5 3

20

30

40

50

60

70

Actual Data

CubicSpline.nb 11

0.5 1 1.5 2 2.5 3

10

20

30

40

50

60

70

FixedCubicSpline

FixedSplinePlot = SplinePlot;

Comparison of Free and Fixed Cubic Spline Plots

Show@FreeSplinePlot, FixedSplinePlot,

PlotLabel → "Comparison of Fixed and Free Splines"D;

0.5 1 1.5 2 2.5 3

10

20

30

40

50

60

70

Comparison of Fixed and Free Splines

For this example, the only difference occurs near the end points. For the

above, FreeSplinePlot and FixedSplinePlot were created using the procedure

PiecewiseCubicPlot and a scrap sheet.

CubicSpline.nb 12

Solution of Spline Equations by Matrix Inversion

If n >= 10 or so, the time requirements of the Solve function becomes prohibitive on computers such as the MacPlus or

Mac SE. For this reason, the matrix

inversion capabilities of Mathematica are used to solve the system

[EquationList]{unknowns} = {RHS} defined by the cubic spline properties.

First, the system of linear equations requiring solution are generated in the

identical manner as above and stored in EquationList. Then the Mathematica

function CoefficientList is used to store the coefficients in a matrix array. The

vector of unknowns is generated as above. The solution is obtained as

Inverse[Eqns].Unknowns and the solution proceeds as previously. For illustrative

purposes we consider the same data used in the Natural Cubic Spline example

preceding.

CubicSpline.nb 13

Clear@myrow, EquationD
Do@Equation@iD = HS@i, t@i + 1DD − a@iDL − HS@i + 1, t@i + 1DD − a@i + 1DL;
constant@iD = −a@iD + a@i + 1D, 8i, 0, n − 2<D

Do@Equation@i + n − 1D = Expand@∂xS@i, xD ê. x → t@i + 1DD − Expand@∂xS@i + 1, xD ê. x → t@i + 1DD;
constant@i + n − 1D = 0, 8i, 0, n − 2<D

Do@Equation@i + 2 n − 2D = Expand@∂8x,2<S@i, xD ê. x → t@i + 1DD −

Expand@∂8x,2<S@i + 1, xD ê. x → t@i + 1DD; constant@i + 2 n − 2D = 0, 8i, 0, n − 2<D
Equation@3 n − 3D = S@n − 1, t@nDD − a@n − 1D
constant@3 n − 3D = a@nD − a@n − 1D
Equation@3 n − 2D = Expand@∂8x,2<S@0, xD ê. x → t@0DD
constant@3 n − 2D = 0

Equation@3 n − 1D = Expand@∂8x,2<S@n − 1, xD ê. x → t@nDD
constant@3 n − 1D = 0;

−1.

−1

−15.6308

0

50.8308

Do@myrow@jD = 8<;
myrow@jD = Append@myrow@jD, Table@Coefficient@Equation@jD, b@iDD, 8i, 0, n − 1<DD;
myrow@jD = Append@myrow@jD, Table@Coefficient@Equation@jD, c@iDD, 8i, 0, n − 1<DD;
myrow@jD = Append@myrow@jD, Table@Coefficient@Equation@jD, d@iDD, 8i, 0, n − 1<DD;
myrow@jD = Flatten@myrow@jDD, 8j, 0, 3 n − 1<D

LHS = Table@myrow@iD, 8i, 0, 3 n − 1<D

880.5, 0, 0, 0, 0, 0, 0.25, 0, 0, 0, 0, 0, 0.125, 0, 0, 0, 0, 0<,
80, 0.5, 0, 0, 0, 0, 0, 0.25, 0, 0, 0, 0, 0, 0.125, 0, 0, 0, 0<,
80, 0, 0.5, 0, 0, 0, 0, 0, 0.25, 0, 0, 0, 0, 0, 0.125, 0, 0, 0<,
80, 0, 0, 0.5, 0, 0, 0, 0, 0, 0.25, 0, 0, 0, 0, 0, 0.125, 0, 0<,
80, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0.25, 0, 0, 0, 0, 0, 0.125, 0<,
81, −1, 0, 0, 0, 0, 1., 0, 0, 0, 0, 0, 0.75, 0, 0, 0, 0, 0<,
80, 1, −1, 0, 0, 0, 0, 1., 0, 0, 0, 0, 0, 0.75, 0, 0, 0, 0<,
80, 0, 1, −1, 0, 0, 0, 0, 1., 0, 0, 0, 0, 0, 0.75, 0, 0, 0<,
80, 0, 0, 1, −1, 0, 0, 0, 0, 1., 0, 0, 0, 0, 0, 0.75, 0, 0<,
80, 0, 0, 0, 1, −1, 0, 0, 0, 0, 1., 0, 0, 0, 0, 0, 0.75, 0<,
80, 0, 0, 0, 0, 0, 2, −2, 0, 0, 0, 0, 3., 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0, 0, 2, −2, 0, 0, 0, 0, 3., 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0, 0, 0, 2, −2, 0, 0, 0, 0, 3., 0, 0, 0<,
80, 0, 0, 0, 0, 0, 0, 0, 0, 2, −2, 0, 0, 0, 0, 3., 0, 0<,
80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, −2, 0, 0, 0, 0, 3., 0<,
80, 0, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0.25, 0, 0, 0, 0, 0, 0.125<,
80, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3.<<

RHS = Table@constant@iD, 8i, 0, 3 n − 1<D

80, −4, −14, −34, −7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 0, 0<

CubicSpline.nb 14

Inverse@LHSD.RHS

91.738461538461538421, −3.476923076923076941, −11.83076923076923076,

−57.19999999999999998, −47.36923076923076923, 0.6769230769230769078,

1.812121111532168788
���

1019
, −10.4307692307692307, −6.276923076923076917,

−84.46153846153846156, 104.123076923076923, −8.030769230769230722,

−6.953846153846153808, 2.769230769230769193, −52.12307692307692311,

125.7230769230769231, −74.76923076923076919, 5.353846153846153825=

To continue, use the following step to assign the above values to the

matrix coefficients and print out the splines as previously shown.

 Do[(* assign coefficients *)

 b[i-1] = %[[i]];

 c[i-1] = %[[i+n]];

 d[i-1] = %[[i+2*n]],{i,1,n}

];

These results are identical to those given by the Solve function.

Whereas the Solve function took 3.3667 seconds to set up and 23.1167 seconds to solve the 6 x 6 system, the matrix

inversion method function took 6.85 seconds

to set up and 15.9667 seconds to solve the same system on a Macintosh II computer.

In this case, the matrix method took approximately 14% less time overall than the Solve function (set up and solution).

For a 9 x 9 system using the function f(x) = x^2 on [0,1], Solve took

6.0833 seconds to set up and 68.7833 seconds to solve. Although matrix inversion took 13.1 seconds to set up the same

system, it took only 39.033 seconds to solve.

The matrix inversion technique here yielded an approximately 30% reduction in

overall time.

For a 10 x 10 system, Solve took 7.01607 and 76.3 seconds compared to

matrix inversion times of 14.8 and 56.5 seconds for set up and solution respectively. Hence the matrix solution yielded only

a 14% improvement for this case.

For a 15 x 15 system, the Solve function took 10.233 and 272.083 seconds with

matrix inversion taking 30.7167 and 212.35 seconds for set up and solution respectively. In this case, the matrix solution

yielded a 16% improvement which means a reduction of 45 seconds in run time.

CubicSpline.nb 15

