
Cubic Spline Interpolation

by Jennifer Voitle and Edward Lumsdaine

Reference

ü Authors

Jennifer Voitle, Edward Lumsdaine

ü Summary

Constructs and plots natural, clamped, periodic and B cubic splines interpolating functions.

ü Context

NumericalMath`SplineInterpolation`

ü Package Version

1.0

ü History

Procedure PeriodicSpline added 20 March 1991 by J. Voitle

ü Keywords

splines, cubic splines, interpolation, approximation

ü Source

John R. Rice, Numerical Methods, Software and Analysis,

IMSL Reference Edition, McGraw-Hill Book Company, 1983.

CubicSplineNotebook.nb 1

ü Mathematica Version

1.2-4.0

ü Limitation

In Procedure BSplineInterpolation, the points {x[1],f[1]} and {x[n-1],f[n-1]} are not interpolated. The procedure requires

at least four data points.

Discussion

The package SplineInterpolation.m contains procedures for construction, integration and plotting of natural, clamped,

periodic and B-cubic interpolating splines.

The procedures require a set of n data points {{x[0],f[0]},{x[1],f[1]}, ... , {x[n],f[n]}}. For the clamped and B-Cubic

spline, the endpoint derivatives f'[0], f'[n] are also required.

Usage:

NaturalCubicSpline[{{x[0],f[0]},{x[1],f[1]},...,

{x[n],f[n]}}]

ClampedCubicSpline[{{x[0],f[0]},{x[1],f[1]},...,

{x[n],f[n]},{f'[0],f'[n]}}]

PeriodicSpline{{x[0],f[0]},{x[1],f[1]},...,

{x[n],f[n]}}]

BCubicSpline[{{x[0],f[0]},{x[1],f[1]},...,

{x[n],f[n]},{f'[0],f'[n]}}]

The natural, clamped and B Spline procedures return a list of spline equations which may be plotted with package proce-

dure

PiecewiseCubicPlot. The periodic spline procedure returns only a plot. If the individual splines are desired, the remark

brackets (* *) can be removed from the print statement in the package. Spline integration may also be performed (for all

except the periodic spline) by IntegrateSpline.

Examples

NaturalCubicSpline constructs the cubic spline with free boundary conditions (S''[0,x[0]] = S''[n-1,x[n]] = 0) on a

given set of data. (Note that the data must describe a function (the x's must be unique) and should be ordered such that

x[0] < x[1] ... < x[n]. However this last is checked for and unordered data are rearranged first.)

For f[x] = Sin[x] with four points on [0,Pi/2], we first create a data set. Note that uniform spacing is not required, but it is

used for convenience here.

CubicSplineNotebook.nb 2

data = TableA8i, Sin@iD<, 9i, 0,
π
�����
2
,

π
���������
2 3

=E

980, 0<, 9 π
����
6
,

1
����
2
=, 9 π

����
3
,

è!!!!
3

����������
2

=, 9 π
����
2
, 1==

Needs@"NumericalMath`SplineInterpolation "̀D
NaturalCubicSpline@dataD

The spline is constructed as follows:

S@0,xD = 0. + 0.993617 x + 0. x2 − 0.141114 x3 for 0. < x < 0.523599

S@1,xD = 0.0124356+ 0.922366 x + 0.136079 x2 − 0.227744 x3 for 0.523599 < x < 1.0472

S@2,xD = −0.67269+ 2.88511 x − 1.7382 x2 + 0.368857 x3 for 1.0472 < x < 1.5708

To plot the spline, call PiecewiseCubicPlot.

FreePlot = PiecewiseCubicPlot@PlotLabel → "Natural Cubic Spline"D

Natural Cubic Spline

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

-Graphics-

Use IntegrateSpline to compute the integral of the spline just constructed:

IntegrateSpline

The integral of the cubic spline is 0.996214.

This compares reasonably well to the true integral,

which is -(Cos[Pi/2] - Cos[0]) = 1.000000.

If the endpoint derivatives are known, a clamped cubic spline may give a better approximation. We can use Append to add

these points to the data set:

data = AppendAdata, 9Sin′@0D, Sin′A
π
�����
2
E=E

980, 0<, 9 π
����
6
,

1
����
2
=, 9 π

����
3
,

è!!!!
3

����������
2

=, 9 π
����
2
, 1=, 81, 0<=

Now call ClampedCubicSpline with this argument. We will store the plot as ClampedPlot for later comparison to the

plot of the natural cubic spline.

CubicSplineNotebook.nb 3

ClampedCubicSpline@dataD

The spline is constructed as follows:

 2 3

S[0,x] = 0. + 1. x - 0.00142815 x - 0.161669 x

 for 0. < x < 0.523599

 2

S[1,x] = -0.00605192 + 1.03467 x - 0.0676524 x -

 3

 0.11951 x for 0.523599 < x < 1.0472

 2

S[2,x] = -0.093313 + 1.28466 x - 0.30637 x -

 3

 0.0435235 x for 1.0472 < x < 1.5708

ClampedPlot = PiecewiseCubicPlot@PlotLabel → "Natural Cubic Spline"D

Natural Cubic Spline

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

-Graphics-

Show@ClampedPlot, FreePlot,

PlotLabel → "Comparison of Natural and Clamped Cubic Splines"D

Comparison of Natural and Clamped Cubic Splines

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

-Graphics-

For this case, the plots differ slightly. To construct a B-cubic spline, use the same data format as for the clamped cubic

spline. A B-cubic spline is a combination of natural and clamped splines as it takes on both sets of boundary conditions

S''[x[0]] = S''[x[n]] = 0, S'[x[0]] = f'[x[0]], S'[x[n]] = f'[x[n]]. The two extra boundary conditions means that two require-

ments must be relaxed elsewhere; hence we forego interpolation of the points {{x[1],f[x[1]]}, {x[n-1],f[x[n-1]]}}.

CubicSplineNotebook.nb 4

BSplineInterpolation@dataD

The B spline is constructed as follows:

 -19 2 3

S[0,x] = 0. + 1. x + 2.57498 10 x - 0.054799 x

 for 0. < x < 0.523599

 2

S[1,x] = 0.0636677 + 0.635211 x + 0.696696 x -

 3

 0.498329 x for 0.523599 < x < 1.0472

 2

S[2,x] = -1.14381 + 4.09437 x - 2.60655 x +

 3

 0.553128 x for 1.0472 < x < 1.5708

BPlot = PiecewiseCubicPlot@PlotLabel → "B Spline Approximation of Sin@xD"D

B Spline Approximation of Sin[x]

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

-Graphics-

For comparative purposes, let us plot this against the exact function with Show:

yExact = PlotASin@xD, 9x, 0,
π
�����
2
=E

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

-Graphics-

CubicSplineNotebook.nb 5

Show@yExact, BPlot, PlotLabel → "Comparison of Sin@xD and B Spline Interpolation"D

Comparison of Sin[x] and B Spline Interpolation

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

-Graphics-

Note that the B-spline fails to interpolate the points

{{Pi/6,1/2},{Pi/3, Sqrt[3]/2}} as expected.

To graph a smooth closed curve in the plane one may use PeriodicSpline. This procedure constructs parametrized splines x

= S1[t], y = S2[t] which satisfy the periodic boundary conditions S[x[0]] = S[x[n]], S'[x[0]] = S'[x[n]],

S''[x[0]] = S''[x[n]].

To generate some interesting data which will result in a pretty curve, we use Rice's data below:

Clear@xb, xt, xmplus, ymplus, xmminus, ymminus, yb, yt, thetaD
theta :=

π
�����
n

xt@i_D := rt Cos@2 i thetaD

xb@i_D := rb CosA2 i theta +
theta
����������������

2
E

xmplus@i_D := CosA2 i theta +
theta
����������������

2
+
theta
����������������

6
E

xmminus@i_D := CosA2 i theta +
theta
����������������

2
−
theta
����������������

6
E

yt@i_D := rt Sin@2 i thetaD

yb@i_D := rb SinA2 i theta +
theta
����������������

2
E

ymplus@i_D := SinA2 i theta +
theta
����������������

2
+
theta
����������������

6
E

ymminus@i_D := SinA2 i theta +
theta
����������������

2
−
theta
����������������

6
E

rt = 1.25; rb = 0.8;

CubicSplineNotebook.nb 6

n = 8

RiceData = Flatten@N@Table@88xt@iD, yt@iD<, 8xmplus@iD, ymplus@iD<,
8xb@iD, yb@iD<, 8xmminus@iD, ymminus@iD<<, 8i, 0, n<DD, 1D

881.25, 0.<, 80.9659258262890682868, 0.2588190451025207623<,
80.7846282243225843593, 0.1560722576129026143<,
80.9914448613738104112, 0.1305261922200515915<,
80.8838834764831844055, 0.8838834764831844055<,
80.5, 0.8660254037844386468<, 80.4444561864156817799, 0.6651756898420361896<,
80.6087614290087206396, 0.7933533402912351645<,
80., 1.25<, 8−0.258819045102520762, 0.9659258262890682869<,
8−0.1560722576129026141, 0.7846282243225843593<,
8−0.1305261922200515914, 0.9914448613738104112<,
8−0.8838834764831844055, 0.8838834764831844055<,
8−0.8660254037844386468, 0.5<, 8−0.6651756898420361895, 0.4444561864156817801<,
8−0.7933533402912351644, 0.6087614290087206396<,
8−1.25, 0.<, 8−0.9659258262890682869, −0.258819045102520762<,
8−0.7846282243225843594, −0.1560722576129026139<,
8−0.9914448613738104112, −0.1305261922200515911<,
8−0.8838834764831844055, −0.8838834764831844055<,
8−0.5, −0.8660254037844386468<, 8−0.4444561864156817803, −0.6651756898420361893<,
8−0.6087614290087206398, −0.7933533402912351643<,
80., −1.25<, 80.2588190451025207619, −0.9659258262890682869<,
80.1560722576129026138, −0.7846282243225843594<,
80.1305261922200515908, −0.9914448613738104113<,
80.8838834764831844055, −0.8838834764831844055<,
80.8660254037844386468, −0.5<, 80.6651756898420361893, −0.4444561864156817804<,
80.7933533402912351639, −0.6087614290087206403<,
81.25, 0.<, 80.965925826289068287, 0.2588190451025207614<,
80.7846282243225843594, 0.1560722576129026137<,
80.9914448613738104112, 0.1305261922200515911<<

Let us make a ListPlot of the above data to get an idea of the results to expect:

ListPlot@RiceData, PlotJoined → TrueD

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Note that we do get a closed curve, but it is certainly not smooth. Call PeriodicSpline with the data, dropping the last

quartet (it is a repeat of the first quartet, and we don't want extra lines on our graph).

CubicSplineNotebook.nb 7

RiceData = Drop@RiceData, −4D
Timing@PeriodicSpline@RiceData, PlotPoints → 40DD

PeriodicCubicSpline

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Implementation

ü Preparation

ü Create the context for this notebook:

BeginPackage@"NumericalMath`SplineInterpolation "̀D

CubicSplineNotebook.nb 8

ü Usage messages:

SplineInterpolation::"usage" =

"The package SplineInterpolation contains code for construction of

natural, clamped, periodic and B cubic splines. A plotting utility,

PiecewiseCubicPlot, and integration procedure, IntegrateSpline,

are also provided. For information on usage of these procedures,

type ?NaturalCubicSpline, ?ClampedCubicSpline, ?PeriodicSpline,

?BSplineInterpolation, ?PiecewiseCubicPlot or ?IntegrateSpline. "

NaturalCubicSpline::"usage" = "NaturalCubicSpline@88x0,y0<,8x1,y1<,...8xn,yn<<D
constructs and prints a natural cubic spline interpolating the given data

points. The natural spline boundary conditions S''@x0D = S''@xnD=0 are used."

ClampedCubicSpline::"usage" = "ClampedCubicSpline@88x0,y0<,8x1,y1<,...
8xn,yn<,8y'0,y'n<<D constructs and prints a clamped cubic

spline interpolating the given data points. The clamped spline

boundary conditions S'@x0D = f'@x0D,S'@xnD = f'@xnD are used."

BSplineInterpolation::"usage" = "BSplineInterpolation@88x0,y0<,8x1,y1<,...8xn,
yn<,8y'0,y'n<<D constructs and prints a B−spline interpolating the given

data points. Both natural and clamped spline boundary conditions S'@
x0D = f'@x0D; S'@xnD = f'@xnD; S''@x0D = S''@xnD = 0 are used. The B−

Spline does not interpolate the given data at the points 88x1,f@x1D<,
8xn−1,f@xn−1D<<. NOTE: n must be >2 for BSplineInterpolation."

PeriodicSpline::"usage" = "PeriodicSpline@88x0,y0<,8x1,y1<,...8xn,yn<<D
constructs and plots a periodic spline. This procedure is used for

plotting smooth, closed curves. The periodic boundary conditions

S@x0D = S@xnD, S'@x0D = S'@xnD and S''@x0D = S''@xnD are used."

IntegrateSpline::"usage" = "IntegrateSpline computes the integral

of the spline over the interval @x@0D,x@nDD.
It is not intended for use with PeriodicSpline."

CubicSpline::"smallnerr" = "Number of data points, n =`1` is insufficient

for spline interpolation: you must provide at least `2` data points."

CubicSpline::"nonfunctionerr" = "The x coordinates provided `1`

do not describe a function. The x's must be unique."

PiecewiseCubicPlot::"usage" = "PiecewiseCubicPlot@D constructs a plot of

the constructed spline. The option PlotPoints−>num may be included.

Otherwise, the default value of PlotPoints is used. Note that setting num=

1 yields a piecewise linear plot, identical to the result obtained via

ListPlot, with PlotJoined−>True. NOTE: Either NaturalCubicSpline or

ClampedCubicSpline must be executed prior to calling PiecewiseCubicPlot."

Definitions

Begin@"`Private`"D
Unprotect@ClampedCubicSpline, NaturalCubicSpline, IntegrateSpline,

PiecewiseCubicPlot, BSplineInterpolation, S, PeriodicSplineD

CubicSplineNotebook.nb 9

The cubic spline is constructed as piecewise cubics S[i,x] on subintervals {[x[i], x[i+1]} for i = 0 to n. S[i,x] is

defined in the shifted power form to reduce the number of unknowns.

Also, t[i] is used for x[i] since x cannot serve both as a subscripted and unsubscripted variable at once.

S@i_, x_D := a@iD + b@iD Hx − t@iDL + c@iD Hx − t@iDL2 + d@iD Hx − t@iDL3

The procedure WriteEquations is common to many of the routines. In WriteEquations, a list of the spline condi-

tions is built up and stored as EquationList. These conditions include interpolation at all points and continuity of the

0th, 1st and 2nd derivatives at the interior points x[i], i = 1,..., n - 1. Thus EquationList stores all equations save for the

individual boundary conditions, which are applied later. EquationList contains the system of linear equations which is

to be solved for the unknown spline coefficients.

WriteEquations :=

Block@8i<, EquationList = 8<; EquationList = Append@EquationList, S@n − 1, t@nDD == a@nDD;
Do@EquationList = Append@EquationList, S@i, t@i + 1DD == S@i + 1, t@i + 1DDD;
EquationList = Append@EquationList,

Expand@∂xS@i, xD ê. x → t@i + 1DD == Expand@∂xS@i + 1, xD ê. x → t@i + 1DDD;
EquationList = Append@EquationList, Expand@∂8x,2<S@i, xD ê. x → t@i + 1DD ==

Expand@∂8x,2<S@i + 1, xD ê. x → t@i + 1DDD, 8i, 0, n − 2<DD

Procedure MakeUnknowns builds up a list of all unknown coefficients b[i], c[i] and d[i]. Note that the a[i] are known

since the shifted power form is used for S[i,x]. The list is stored as

Unknowns.

MakeUnknowns :=

Block@8i<, Unknowns = 8<; Do@Unknowns = Append@Unknowns, b@iDD, 8i, 0, n − 1<D;
Do@Unknowns = Append@Unknowns, c@iDD, 8i, 0, n − 1<D;
Do@Unknowns = Append@Unknowns, d@iDD, 8i, 0, n − 1<DD

Procedure SolvetheSystem is used only for natural and clamped cubic splines. SolvetheSystem stores the solution

of Solve[EquationList,Unknowns] in the variable Result, and then assigns the unknowns b[i], c[i] and d[i] to

their rules from Solve. The spline is then printed out in terms of the subsplines S[i,x] on [ti,ti+1]. The variable

Global`x is used as the argument in S[i,x] as we are in the SplineInterpolation`Private` context and x

would be represented as SplineInterpolation`Private`x were we to just use x as the argument.

SolvetheSystem :=

BlockA8<, Result = N@Solve@EquationList, UnknownsDD; DoAb@i − 1D = ResultP1, i, 2T;

c@i − 1D = ResultP1, i + n, 2T; d@i − 1D = ResultP1, i + 2 n, 2T, 9i, 1,
3 n
���������
3

=E;

Print@"The spline is constructed as follows: "D; Do@Print@"S@", i, ",xD = ",

Expand@S@i, Global`xDD, " for ", t@iD, "  x  ", t@i + 1DD, 8i, 0, n − 1<DE

SolvetheSystem must be slightly modified when called by BSplineInterpolation, since slightly different

conditions were applied. The first two elements in Result will be the two unknown a[i]'s rather than b[0] and b[1] as they

were in SolvetheSystem. This is basically the only difference in the two procedures. The following procedure, Sol-

vetheBSplineSystem, is the B-spline analog of SolvetheSystem .

CubicSplineNotebook.nb 10

SolvetheBSplineSystem := Block@8<, Result = N@Solve@EquationList, UnknownsDD;
a@1D = ResultP1, 1, 2T; a@n − 1D = ResultP1, 2, 2T; Do@b@i − 3D = ResultP1, i, 2T;
c@i − 3D = ResultP1, i + n, 2T; d@i − 3D = ResultP1, i + 2 n, 2T, 8i, 3, 3 + n − 1<D;
Print@"The B spline is constructed as follows: "D; Do@Print@"S@", i, ",xD = ",

Expand@S@i, Global`xDD, " for ", t@iD, "  x  ", t@i + 1DD, 8i, 0, n − 1<DD

The Periodic Spline also requires slight modification of SolvetheSystem . Since there are two splines x=S1[t], y =

S2[t] constructed, the spline output is suppressed.

SolvePeriodicSystem := Block@8<, LHS = Table@Row@iD, 8i, 0, 3 n − 1<D;
RHS = Table@constant@iD, 8i, 0, 3 n − 1<D; Result = LinearSolve@LHS, RHSD;
Do@b@i − 1D = ResultPiT; c@i − 1D = ResultPi + nT; d@i − 1D = ResultPi + 2 nT, 8i, 1, n<D;D

The procedure sets up the periodic spline equations and calls upon the periodic spline solver for solution.

WriteandSolvePeriodicEquations:=

Block@8i<, Clear@Row, Equation, b, c, dD; Do@Equation@iD =

HS@i, t@i + 1DD − a@iDL − HS@i + 1, t@i + 1DD − a@i + 1DL; constant@iD = −a@iD + a@i + 1D;
Equation@i + n − 1D = Expand@∂xS@i, xD ê. x → t@i + 1DD − Expand@∂xS@i + 1, xD ê. x → t@i + 1DD;
constant@i + n − 1D = 0; Equation@i + 2 n − 2D = Expand@∂8x,2<S@i, xD ê. x → t@i + 1DD −

Expand@∂8x,2<S@i + 1, xD ê. x → t@i + 1DD; constant@i + 2 n − 2D = 0, 8i, 0, n − 2<D;
Equation@3 n − 3D = S@n − 1, t@nDD − a@n − 1D − S@0, t@0DD; constant@3 n − 3D = a@0D − a@n − 1D;
Equation@3 n − 2D = Expand@∂xS@0, xD ê. x → t@0DD − Expand@∂xS@n − 1, xD ê. x → t@nDD;
constant@3 n − 2D = 0;

Equation@3 n − 1D = Expand@∂8x,2<S@0, xD ê. x → t@0DD − Expand@∂8x,2<S@n − 1, xD ê. x → t@nDD;
constant@3 n − 1D = 0; Do@Row@jD = 8<;
Row@jD = Append@Row@jD, Table@Coefficient@Equation@jD, b@iDD, 8i, 0, n − 1<DD;
Row@jD = Append@Row@jD, Table@Coefficient@Equation@jD, c@iDD, 8i, 0, n − 1<DD;
Row@jD = Append@Row@jD, Table@Coefficient@Equation@jD, d@iDD, 8i, 0, n − 1<DD;
Row@jD = Flatten@Row@jDD, 8j, 0, 3 n − 1<D; MakeUnknowns; SolvePeriodicSystemD

The following procedure, NaturalCubicSpline, performs construction of a natural cubic spline. The user calls it with a list of

{x,y} data pairs describing his data. The syntax of the call is

NaturalCubicSpline[{{x[0],y[0]},{x[1],y[1]},

 ... , {x[n],y[n]}}]

These data need not be evenly spaced, but must define a function: that is, each x[i] must be unique. A check is provided for

uniqueness of the x[i]'s through the built-in Union function. The input data list (slist) is renamed as SplineData in case

alterations must be performed. A list of the x[i]'s is constructed as local variable xlist. The command

xlist != Union[xlist] evaluates to True if any of the x[i]'s are duplicated; it is False otherwise. If the test passes,

a message (CubicSpline::nonfunctionerr) is printed and a Break is executed.

Additionally, the data must be provided in an ordered form such that x[0]<x[1] < ... < x[n]. Should the user provide data

which do not satisfy this condition, no error message is printed. The intrinsic Mathematica procedure Sort operates

on the data and renders them ordered. Once the data have been deemed acceptable, the spline construction is continued.

First, the {x,y} data are stored as {t[i],a[i]} pairs, and WriteEquations is called. The free boundary conditions are

appended to EquationList, which completes the list of spline conditions. The solution of the linear system is per-

formed in SolvetheSystem.

CubicSplineNotebook.nb 11

NaturalCubicSpline@slist_ListD :=

Block@8i<, Clear@a, b, c, dD; SplineData = N@slistD; MinNumberofPoints = 3;

If@Length@SplineDataD  MinNumberofPoints, Message@CubicSpline::"smallnerr",
Length@SplineDataD, MinNumberofPointsD; Return@Hold@NaturalCubicSpline@dataDDDD;

If@SplineData ≠ Sort@SplineDataD, SplineData = Sort@SplineDataDD;
xlist = Table@SplineDataPi, 1T, 8i, Length@SplineDataD<D; If@xlist ≠ Union@xlistD,
Message@CubicSpline::"nonfunctionerr", xlistD; Return@DD; n = Length@SplineDataD − 1;

Do@t@iD = SplineDataPi + 1, 1T; a@iD = SplineDataPi + 1, 2T, 8i, 0, n<D; WriteEquations;

EquationList = Append@EquationList, Expand@∂8x,2<S@0, xD ê. x → t@0DD == 0D;
EquationList = Append@EquationList, Expand@∂8x,2<S@n − 1, xD ê. x → t@nDD == 0D;
MakeUnknowns; SolvetheSystemD

The ClampedCubicSpline function detailed below is very similar to the NaturalCubicSpline procedure, except

that in addition to the {x,y} data, the user must also provide derivative information f'[x[0]] and f'[x[n]]. This information is

added to the end of the data list. The syntax of the call is

ClampedCubicSpline[{{x[0],y[0]},{x[1],y[1]},

 ... , {x[n],y[n]},{f'[x[0]],f'[x[n]]}}]

Since we will drop this derivative information from the list once read, it is necessary to rename the data list. This is the

purpose of the line SplineData = slist.

The derivative values f'[x[0]] and f'[x[n]] are stored in the local variables LeftDeriv and RightDeriv respectively. Then they

are dropped from the data list, leaving just the {x,y} point information. These values are stored as {t[i],a[i]} pairs in exactly

the same way as done in NaturalCubicSpline. WriteEquations is called, which accumulates all equations

in EquationList save for the clamped boundary conditions, which are appended to EquationList. The linear

system is then solved by procedure SolvetheSystem previously described.

ClampedCubicSpline@slist_ListD :=

Block@8i<, Clear@a, b, c, dD; SplineData = N@slistD; MinNumberofPoints = 4;

If@Length@SplineDataD  MinNumberofPoints, Message@CubicSpline::"smallnerr",
Length@SplineDataD, MinNumberofPointsD; Return@Hold@ClampedCubicSpline@dataDDDD;

LeftDeriv = SplineDataPLength@SplineDataD, 1T;
RightDeriv = SplineDataPLength@SplineDataD, 2T; SplineData = Drop@SplineData, −1D;
If@SplineData ≠ Sort@SplineDataD, SplineData = Sort@SplineDataDD;
xlist = Table@SplineDataPi, 1T, 8i, Length@SplineDataD<D;
If@xlist ≠ Union@xlistD, Message@CubicSpline::"nonfunctionerr", xlistD; Return@DD;
n = Length@SplineDataD − 1;

Do@t@iD = SplineDataPi + 1, 1T; a@iD = SplineDataPi + 1, 2T, 8i, 0, n<D; WriteEquations;

EquationList = Append@EquationList, Expand@∂xS@0, xD ê. x → t@0DD == LeftDerivD;
EquationList = Append@EquationList, Expand@∂xS@n − 1, xD ê. x → t@nDD == RightDerivD;
MakeUnknowns; SolvetheSystemD

Interpolation by Cubic B-Splines is performed in the following routine, BSplineInterpolation. The arguments to this

procedure are identical to the arguments in ClampedCubicSpline; hence the syntax of the call is

BSplineInterpolation[{{x[0],y[0]},{x[1],y[1]},

 ... , {x[n],y[n]},{f'[x[0]],f'[x[n]]}}]

CubicSplineNotebook.nb 12

The B-Spline is very similar to the preceding splines, except both the natural and fixed boundary conditions are applied.

We then have two less degrees of freedom, so must drop two other requirements. It is common to relax requirement on

interpolation at two of the input points. Here we have arbitrarily decided to leave the points {t[1],a[1]} and {t[n-1],a[n-1]

}uninterpolated. This could be changed by the reader if desired. The procedure BSplineInterpolation will not

work on a set of n<=3 data points without modification (if n = 3, we cannot drop the points t[1] and t[n-1] since they are the

same point, hence we would also need to drop one of the end points.) It is anticipated that most users will have more than 3

data points. An error check is performed to ensure that 4 or more points are used. Inclusion of the derivatives makes the

minimal length of the input list equal to five. Should a smaller list be provided, a message (BSpline::smallnerr) is printed, a

Break is executed and the output Hold[BSplineInterpolation[data]] is returned.

The procedure is very similar to the other spline procedures previously described, the sole differences being the boundary

conditions and the two undetermined a[i]'s. Hence this UnknownList will also include a[1] and a[n-1], which are prepended

to the UnknownList written by procedure MakeUnknowns. The solution is executed by procedure SolveBSplineUnknowns.

BSplineInterpolation@slist_ListD :=

Block@8i<, Clear@a, b, c, dD; SplineData = N@slistD; MinNumberofPoints = 5;

If@Length@SplineDataD  MinNumberofPoints, Message@CubicSpline::"smallnerr",
Length@SplineDataD, MinNumberofPointsD; Return@Hold@BSplineInterpolation@dataDDDD;

LeftDeriv = SplineDataPLength@SplineDataD, 1T;
RightDeriv = SplineDataPLength@SplineDataD, 2T; SplineData = Drop@SplineData, −1D;
If@SplineData ≠ Sort@SplineDataD, SplineData = Sort@SplineDataDD;
xlist = Table@SplineDataPi, 1T, 8i, Length@SplineDataD<D;
If@xlist ≠ Union@xlistD, Message@CubicSpline::"nonfunctionerr", xlistD; Return@DD;
n = Length@SplineDataD − 1; Do@t@iD = SplineDataPi + 1, 1T, 8i, 0, n<D;
a@0D = SplineDataP1, 2T; a@nD = SplineDataPn + 1, 2T;
Do@a@iD = SplineDataPi + 1, 2T, 8i, 2, n − 2<D; WriteEquations;

EquationList = Append@EquationList, Expand@∂8x,2<S@0, xD ê. x → t@0DD == 0D;
EquationList = Append@EquationList, Expand@∂8x,2<S@n − 1, xD ê. x → t@nDD == 0D;
EquationList = Append@EquationList, Expand@∂xS@0, xD ê. x → t@0DD == LeftDerivD;
EquationList = Append@EquationList, Expand@∂xS@n − 1, xD ê. x → t@nDD == RightDerivD;
MakeUnknowns; Unknowns = Prepend@Unknowns, a@n − 1DD;
Unknowns = Prepend@Unknowns, a@1DD; SolvetheBSplineSystemD

The procedure PeriodicSpline is used for creation of smooth closed plane curves. The data satisfy the periodic

boundary condtions S[0,x[0]] = S[n-1,x[n]], S'[0,x[0]] = S'[n-1,x[n]], and S''[0,x[0]] = S''[n-1,x[n]]. The input {x[i],y[i]}

data are used to create two splines x = S1[t], y = S2[t]. The parametrizations are then plotted. Since PeriodicSpline

must construct two splines, it takes longer than the other spline routines. The splines are not printed out here; the only

output is the plot. If splines are desired, the user can remove the remark statements around the Print statements for the

splines. The S1[t] values are stored in the list AbscissaPoints while the S2[t] values are stored in Ordinate-

Points. These lists are then merged in SplineData which is plotted.

CubicSplineNotebook.nb 13

PeriodicSpline@slist_List, opts___RuleD := BlockA8i, plotpoints, X, Y<,
Clear@a, b, c, dD; plotpoints = PlotPoints ê. 8opts< ê. Options@PlotD;
SplineData = slist; MinNumberofPoints = 3; If@Length@SplineDataD  MinNumberofPoints,

Message@CubicSpline::"smallnerr", Length@SplineDataD, MinNumberofPointsD;
Return@Hold@NaturalCubicSpline@dataDDDD; n = Length@SplineDataD;
Do@t@iD = i + 1; a@iD = SplineDataPi + 1, 1T; aa@iD = SplineDataPi + 1, 2T, 8i, 0, n − 1<D;
t@nD = n + 1; a@nD = a@0D; WriteandSolvePeriodicEquations; title = "PeriodicCubicSpline";

DoAX@iD = DropATableAN@S@i, xDD, 9x, t@iD, t@i + 1D, t@i + 1D − t@iD
��������������������������������������
plotpoints

=E, −1E, 8i, 0, n − 2<E;

X@n − 1D = TableAN@S@n − 1, xDD, 9x, t@n − 1D, t@nD,
t@nD − t@n − 1D
��������������������������������������
plotpoints

=E;

AbscissaPoints = Flatten@Table@X@iD, 8i, 0, n − 1<D, 1D; Clear@a, b, c, dD;
Do@a@iD = aa@iD, 8i, 0, n − 1<D; a@nD = a@0D; WriteandSolvePeriodicEquations;

DoAY@iD = DropATableAN@S@i, xDD, 9x, t@iD, t@i + 1D, t@i + 1D − t@iD
��������������������������������������
plotpoints

=E, −1E, 8i, 0, n − 2<E;

Y@n − 1D = TableAN@S@n − 1, xDD, 9x, t@n − 1D, t@nD,
t@nD − t@n − 1D
��������������������������������������
plotpoints

=E;

OrdinatePoints = Flatten@Table@Y@iD, 8i, 0, n − 1<D, 1D; SplineData =

Table@8AbscissaPointsPiT, OrdinatePointsPiT<, 8i, Length@OrdinatePointsD<D;
ListPlot@SplineData, PlotJoined → True, PlotLabel → titleDE

Spline plots are generated by the included procedure PiecewiseCubicPlot[]. To plot the piecewise cubics which

comprise the splines, the idea is to define S[i,x] only on its subinterval [t[i],t[i+1]]. The inherent Mathematica function

Which is unsatisfactory for this purpose since the number of splines (n) is arbitrary. It is not possible (as of v. 1.2) to pass

a list of conditions to Which. However, ListPlot can handle lists, which is why it is used here. The procedure Piece-

wiseCubicPlot has the option PlotPoints, which is by default equal to the value of the PlotPoints option in

Plot. (Note that PlotPoints->1 yields a piecewise linear function which is identical to the output from ListPlot

with PlotJoined->True.)

The local variable plot[i] holds a table of points {x,S[i,x]} for x running from t[i] to t[i+1] in increments of plotpoints.

Hence we represent the continous cubic S[i,x] by a list of points, which is the same way Plot works. The list of these lists

is Flattened and plotted by ListPlot.

PiecewiseCubicPlot@opts___RuleD :=

BlockA8i, plotpoints<, plotpoints = PlotPoints ê. 8opts< ê. Options@PlotD;
title = PlotLabel ê. 8opts< ê. Options@PlotD;

DoAplot@iD = TableAN@8x, S@i, xD<D, 9x, t@iD, t@i + 1D,
t@i + 1D − t@iD
��������������������������������������
plotpoints

=E, 8i, 0, n − 1<E;

SplinePlot = ListPlot@Flatten@Table@plot@iD, 8i, 0, n − 1<D, 1D,
PlotJoined → True, PlotLabel → titleDE

The procedure IntegrateSpline provides integration of the spline. Since the analytic result is known, it is used to

avoid the time-consuming process of loading IntegralTables. The result is stored and printed as SplineIntegral.

CubicSplineNotebook.nb 14

IntegrateSpline :=

BlockA8i<, SplineIntegral = ‚
i=0

n−1 i
k
jja@iD Ht@i + 1D − t@iDL +

1
����
2
b@iD Ht@i + 1D − t@iDL2 +

1
����
3
c@iD Ht@i + 1D − t@iDL3 +

1
����
4
d@iD Ht@i + 1D − t@iDL4y

{
zz;

Print@"The integral of the cubic spline is ", SplineIntegral, "."DE

End@D
Protect@NaturalCubicSpline, ClampedCubicSpline,

BSplineInterpolation, PiecewiseCubicPlot, PeriodicSpline, IntegrateSplineD

ü Finish

EndPackage@D

CubicSplineNotebook.nb 15

